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Summary

A new pulley stress analysis method is presented. It shall be re-
ferred to as the Maodified Transfer Matrix (MTM) method. This
method is based on a reformulation of transfer matrices for the
pulley’s cylindrical shell, end-disk plate with non-uniform thick-
ness and shaft by using finite element concepts. It combines the
strength of both classical stress analysis methods and finite ele-
ment methods. It proves to be an efficient and effective ap-
proach in determining the stresses in a pulley. A pulley stress
analysis software program named PSTRESS 3.0 has been de-
veloped based on this new method. At the end of the paper, a
numerical example of the pulley stress analysis, using PSTRESS
3.0, is given. The result is satisfactorily compared with that cb-
tained in a finite element model (ANSYS) solution with a very fine
mesh.

Nomenclature

Cartesian coordinate in horizontal direction
Cartesian coordinate in vertical direction
Cartesian coordinate in pulley axial direction
cylindrical coordinate in pulley radial direction
cylindrical coordinate in pulley circumferential direction
shear force acting on shaft cross section
bending moment acting on shaft cross section
distributed load acting on shaft axis
transverse displacement of shaft neutral axis
rotational angle of shaft cross section

shaft bending stiffness

shaft cross section area

shear modulus of shaft material

shaft state variable vector

matrix containing coefficients of governing ODEs for
shaft bending deformation

vector representing the non-homogensous term of the
governing ODEs for shaft bending deformation

transfer matrix for the governing ODEs for shaft bending
deformation
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identity matrix
TMB beam element stiffness matrix
TMB beam element displacement vector

TMB beam element external force vector

TMB beam element internal force vector

transverse shear force acting on the disk cross section
perpendicular to radial direction

transverse shear force acting on the disk cross section
perpendicular to circumferential direction

bending moment acting on the disk cross section per-
pendicular to disk radial direction

bending moment acting on the disk cross section per-
pendicular to disk circumferential direction

twisting moment acting on the disk cross sections per-
pendicular to disk radial direction and disk circumferen-
tial direction

extemnal transverse force acting on the neutral surface of
the disk

pulley disk and shell displacements in pulley axial direc-
tion

pulley disk and shell displacements in pulley circumfe-
rential direction

pulley disk and shell displacements in pulley radial direc-
tion

Younag's modulus of disk or cylindrical shell of pulley
PoissoN's ratio of disk or cylindrical shell of pulley
thickness of disk or cylindrical shell of pulley

coefficient to describe the geometry of disk variable
thickness

exponential number to describe the geometry of disk
variable thickness

cross section bending stiffness of disk or cylindrical shell
FouRrIER component number :

FouriEr component of u

Fourier component of v

FOURIER component of w

Fourier compenent of g

FouriEr component of Q,

FouriEr component of Q(p

Fourier component of M,

Fourier component of M
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Fourier component of Mr¢
rotational angle of disk or cylindrical shell of pulley

disk bending state variable vectcr of FOURER component
m

disk circumferential harmonic resultant bending moment

disk circumferential harmonic resultant transverse shear
force

matrix containing coefficients of governing ODEs for disk
bending deformation of FOURIER component m

vector representing the non-homogeneous term of the
governing ODEs for disk bending deformation of FOURIER
component m

TMB disk bending element displacement vector
TMB disk bending element stiffness matrix

TMB disk bending element external force vector

TMB disk bending element internal force vector

normal force acting on the disk cross section perpendic-
ular to radial direction

normal force acting on the disk cross section perpendic-
ular to circumferential direction

in-plane shear force acting on the disk cross sections
perpendicular to disk radial direction and disk circumfe-
rential direction

Fourier component of NV,
FOURIER component of NV,
FoUuRIER component of qu)

disk plane-stress state variable vector of FOURER com-
ponentm

matrix containing coefficients of governing ODEs for disk
in-plane deformation of FOURIER component m

TMB disk plane-stress element displacement vector
TMB disk plane-stress element stiffness matrix

TMB disk plane-stress element external force vector
TMB disk plane-stress element internal force vector

TMB disk element displacement vector
TMB disk element stiffness matrix

TMB disk element external force vector

TMB disk element internal force vector
cylindrical shell radius

normal force acting on the cylindrical shell cross section
perpendicular to pulley axial direction

normal force acting on the cylindrical shell cross section
perpendicular to pulley circumferential direction

membrane shear force acting on the cylindrical shell
cross sections perpendicular to pulley axial direction and
circumferential direction

transverse shear force acting on the cylindrical shell
cross section perpendicular to pulley axial direction

transverse shear force acting on the cylindrical shell
cross section perpendicular to pulley circumferential di-
rection

bending moment acting on the cylindrical shell cross
section perpendicular to pulley axial direction

bending moment acting on the cylindrical shell crass
section perpendicular to pulley circumferential direction
twisting moment acting on the cylindrical shell cross

sections perpendicular to pulley axial direction and cir-
cumferential direction

Volume 13 » Number 4 » Novemb solids
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£ external load acting on the neutral surface of shell in pul-
ley axial direction

7 external load acting on the neutral surface of shell in pul-

) ley circumferential direction

T, external load acting on the neutral surface of shell in pul-
ley radial direction

fom Fourier component of f,

f¢m Fourier component of f¢

fem Fourier component of £,

N,  Fourier component of N,

N,  FOURER component of N,

S Fourier component of S

M, Fourier component of M,

M, Foumier component of M,

M, FOURER component of M,

Vi, Foumrier component of element boundary equivalent
transverse shear force

X cylindrical shell state variable vector of FOURIER compo-
nent m

I matrix containing coefficients of governing ODEs for cy-

lindrical shell of FOURIER component m

vector representing the non-homogeneous term of the
governing ODEs for cylindrical shell of FouriER compo-
nent m

Ugs TMB cylindrical shell element displacement vector
Kesm TMB cylindrical shell stiffness matrix

Fe‘ffm TMB cylindrical shell element external force vector

Ao TMB cylindrical shell element internal force vector

¥~ state variable vector of FOURIER component m

s axial or radial coordinate

H matrix containing coefficients of governing ODEs of a
pulley component

L, vector representing the non-homogeneous term of the
governing CDEs of a pulley component

Un generalized displacements of state variable vector of a
pulley component

o generalized forces of state variable vector of a pulley
component

T transfer matrix for the governing ODEs of a pulley com-
ponent

D, TMB element displacement vector of a pulley compo-
nent

m TMB element stiffness matrix of a pulley component
Frim  TMB element internal force vector of a pulley component
Foam TMB element external force vector of a pulley compo-

nent

1. Introduction

An engineered class belt conveyor pulley typically consists of a
cylindrical shell, two end disks with variable thickness, a shaft,
and two locking devices connecting end disks to the shaft as
shown in Fig. 1. The pulley is usually subjected to severe bend-
ing due to very high belt tensions and locking assembly pres-
sures. In the design of such a pulley, it is necessary to take into
account the possibility of fatigue failure. Costly failures in large
conveyor pulleys have led designers to seek detailed stress fa-
tigue or endurance analysis. To date, two types of approaches
for pulley stress analysis have been reported in the literature.
One is the classical mechanics approach developed by LANGE
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Fig. 1. Cross-section of pulley assembly

[1] and ScHMoLTzl [2]. The other is the finite element method
(FEM) employed by VopsTrelL [3], DaniEL [4] and SeTHi et al. [5].
Both types of approaches have advantages and disadvantages.

The classical mechanics approach developed by Lance and
ScHMOLTZI is an approximate analytical approach, providing a
closed-form solution for stresses in a pulley. The advantages of
this method are that it is easy to program and takes a very short
execution time to obtain a solution. The disadvantage is that the
stress solution is not accurate at the locations near the connec-
tion region between the shell and end disks because of its poor
approximation in treating the elastic coupling between these
components. Specifically, the displacement of the end disk and
shell are not coupled at their connection. This leads to signifi-
cant errors in the stress and strain field about the connectors as
will be shown.

The FEM has just the opposite advantages and disadvantages
of the Lange classical method. The major advantage of FEM is
its ease of treating complex geometry and boundary conditions.
The major disadvantage is its long execution time coupled with
its need for an experienced user to generate a proper finite ele-
ment mesh.

In this paper, a new method called the Madified Transfer Matrix
(MTM) method is presented. This method circumvents the dis-
advantages of both the Lange classical method and the conven-
tional FEM. The MTM method proves to be a very effective and
efficient approach in providing an accurate pulley assembly
stress solution for any loading condition pulley.

Historically, the transfer matrix method was developed several
decades ago [6] and was very popular in solving one dimen-
sional static and dynamic problems before the advent of the
FEM. Even today, this method is still useful in providing closed
form solutions to certain elasticity problems with simple boun-
dary conditions [7]. Although there is a limitation in handling
complicated boundary conditions, such as the boundary condi-
tions for a pulley, the solution obtained by using the transfer ma-
trix method is exact. In this paper, it is shown that the limitation
of the transfer matrix method can be overcome if the transfer
matrix is reformulated by using finite element concepts. The re-
formulated transfer matrix is essentially a special finite element.
The new method using these special finite elements, called
transfer matrix based (TMB) finite elements, is capable of solv-
ing a class of structural elasticity problems (including the elastic-
ity problem of a pulley), whose governing differential equations
can be reduced to a set of ordinary differential eguations
(ODEs). Regardless of how few of these TMB finite elements are
used in a model, the solution obtained by this MTM method is
generally very accurate due to the nature of the transfer matrix
method.

'ﬁﬁess Analysis

Based on the MTM method, a computer program for pulley
stress analysis named PSTRESS 3.0 has been developed. This
program can provide stress solutions and perform fatigue anal-
ysis for most pulleys, with the characteristic geometry shown in
Fig. 1. The pulley can be subjected to any type of non-uniform
surface pressure, shear loading, and prescribed locking pres-
sure.

In section 2, the general ideas for deriving TMB elements for
beam (i.e. shaft), end-disk plate with variable thickness, and cy-
lindrical shell are presented. In section 3, the assembly of these
elements to model a pulley in PSTRESS 3.0 is discussed. In
section 4, an example of a belt conveyor pulley is numerically
solved by PSTRESS 3.0 and the results are compared with
those obtained using a finely meshed FEM (ANSYS) solution.

2. TMB Finite Elements for Beam,
Disk Plate and Cylindrical Shell

Stresses and displacements in a pulley can be expressed in
terms of FOURIER series with respect to the circumferential angle
because of the pulley’s axisymmetric geometry. Each FOURER
component of the solutions can be determined by solving a set
of corresponding governing differential equations, which are un-
coupled with the governing equations for other Fourier compo-
nents. In Appendices A, B and C, it is shown that the governing
equaticons for Fourier components for shaft, end-disk plate with
non-uniform thickness, and cylindrical shell of a pulley can be
reduced to a set of ODEs of the first order respectively. The
general solutions to these ODEs can be expressed in terms of
the transfer matrix. By following the procedure described in Ap-
pendix D, the general solutions can be reorganized in a finite
element form as below

+F

K. D, =F wtm (1)

intm
where K is the TMB element stiffness matrix, D, | is the element
displacement vector, F, .. is the element internal force vector,
Fom i the element external force vector, and the subscript “m”
denotes the FOURER component number. The detailed proce-
dures of developing TMB elements for shaft, end-disk and cylin-
drical shell are given in Appendices A, B and C, respectively.

Remarks:

As seen in the above discussion, the general solution to the
governing differential equations for a pulley can be finally trans-
formed into a finite-element form. This allows us to exploit many
finte element analysis (FEA) capabilities to resolve pulley
stresses using our MTM method. The maost valuable FEA capa-
bility to be employed is the way of treating complicated boun-
dary conditions. Therefore, using the MTM method, we can
easily take into account the elastic coupling between the rim
and the end-disk by following FEA assembly procedures, and
implement the locking assembly pressure by using the FEA ap-
proach of treating mechanical interference between two bodies.
Both of these problems cannct be easily or precisely handled by
most classical methods.

3. Assembly of TMB Elements for a
Pulley Model in PSTRESS 3.0

In PSTRESS 3.0, the above derived TMB beam, disk plate and
cylindrical shell element stiffness matrices are brought together
to form a global stiffness matrix for a pulley in essentially the
same way as that in conventional FEM. However, care must be
taken at two locations, where special element assembly meth-
ods are required.

715



Pulley Stress Anal

The first location is the connection region between the shell and
the disk shown in Fig. 2a, where the finite dimension of the joint
has to be taken into account in the stiffness matrix. The conven-
tional way of treating the whaole region as a single node would
cause significant error in stress solutions near this region. One
of the reasonable ways of providing correct elastic stiffness to
connect the rim and the disk is treating the whole region as a
special element by applying a substructure method. In
PSTRESS 3.0, such a special element shown in Fig. 2b is devel-
oped.

The second location is the connection point between the lock-
ing device and the shaft. One thing that must be kept in mind

Connection region

End disk

(a)

Connected g

; Connected
with rim edge

with rim

-

4

Connected with
end disk

(b)

Fig. 2:  Connecting element between rim and end-disk

Fig. 3:  Load on pulley due to belt tension
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when assembling elements in this location is that the final solu-

tion consists of many Fourier components, of which the shaft
element only contributes to the FOURIER components of m =0, 1
and -1. In fact, in a pulley structure, the shaft deformation is
governed only by these three FOURER components due to its
slender geometry. For the component of m = 0, the corre-
sponding shaft deformation can be exactly modeled by a TMB
cylindrical shell element presented in Appendix C. When a TMB
beam element described in Appendix A is used, representing
the shaft deformation of components of m = =1 and 1 (i.e.,
bending deformation), the following constraints on the deforma-
tion of the connecting point must be imposed:

W, =My, @)
Uy = gnatt O 3)
w,=w,, (4)
0, =0, (5

w, and 0, are the shaft deflection and rotational angle respec-
tively at the connecting point, where the subscript s denotes
shaft deformation. The general definitions of w, and 6, are given
in Appendix A,

Uy Vi W, @nd 8 are disk plate displacements and rotational
angle at the connecting point, where the subscript m denotes
the FouriER component number: m = -1 or 1. The general defi-
nitions of v, v, , w, and @ _ are given in Appendix B. r,, . is the
shaft radius at the connection point.

Such constraints are easy to implement in a finite element
model by using FEA static condensation or penalty methods
[10]. In PSTRESS 3.0, the static condensation methed is em-
ployed. Finally, it must be pointed out that the TMB beam ele-
ment stiffness matrix and corresponding nodal forces must be
multiplied by a factor of 2 before they are assembled into global
equations, due to the difference between actual forces and har-
monic forces.

4. Numerical Example

Consider the belt conveyor pulley shown in Fig. 1, which is sup-
ported on two bearings and subjected to a locking pressure of
115.71 mPa (16,778 psi) at the interface between the locking
device and disk hub. The shell circumferential surface pressure
and shear loading between circumferential angles of 83" and
254", are developed from unegual belt tensions T, = 1,017.8 kN
(228,800 Ib) and T, = 632.98 kN (142,300 Ib) shown in Fig. 3.
The material properties and geometrical parameters of the pul-
ley are given in Table 1. This pulley is analyzed by using
PSTRESS 3.0, ANSYS 4.4 and CDI's derivation of LANGE's clas-
sical method, respectively. Because of symmetry, only one
quarter of pulley cross section is modeled.

In the PSTRESS model, the rim is modeled with 2 TMB ele-
ments, the disk is modeled with 6 TMB elements, the shaft is
modeled with 3 TMB elements, and 71 FOURIER components are
used. The reason for using more TMB elements for the disk is
the necessity of taking account of the non-uniform thickness of
the disk. In the ANSYS FEA model, 5,000 axisymmetric structu-
ral solid elements (with non axis-symmetric lcading) are em-
ployed in the 2-D cross-section. The use of the ANSYS FEM
package to analyze a pulley is discussed in [5].

Figs. 4-7 show the PSTRESS numerical results compared. with
the ANSYS results. From these figures, it is seen that at location
A of the rim and location D of the disk the agreement between
the results of the MTM method and the results of the conven-
tional FEM is good. At location B of the rim and location C of the
disk the agreement is still good, but some inaccuracy is ob-
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Material Property

Young's modulus, MPSI

PoissoN's ratio

Rim Geometry

- Rim length, inches

Rim outer diameter, inches
Rirm thickness, inches

Belt width, inches

Disk Geometry

Locking device width, inches
Hub outer diameter, inches
Hub inner diameter, inches
Hub width, inches

Fillet radius at hub, inches
Fillet raclius atrim, inches

' Disk thickness between hub and rim. inches

Radius : Thickness
1 15610 1.740
2 16,268 1.487
3. 19.321 : 1.400
4, BOAAn. 1217
5 . 22742 1400
Shaft Geometry o

Diameter, Inches

~ Shaft length, Inches

Distance between bearing centres, inches
Distance between disk centres, inches

30
0.3

&2
54

15
72

38
e
20.27
8.7
- 367
1.20

16.535
121
104

74.13

Table 1: Material properties and geomeméa\ parameters

e,,sr_‘_'.'_vt_'ress Analysis

served. The reason may be that locations B and C are within the
connection region between the rim and disk, where the 3-D
stress state is more significant and cannot be fully taken into ac-
count in 2-D shell and plate theories. According to St. VENANTS
principle and our experience, this 3-D stress state has only a
very localized effect on pulley stress solution when the thick-
nesses of rim and disk are relatively small compared with the
length and radius of the rim. It must be noted that the MTM
method is much more efficient than the conventional FEM.
PSTRESS 3.0 takes approximately 30 seconds to obtain a so-
lution on an IBM PC 4886, including the fatigue analysis. The
FEM (ANSYS) solution takes 12-24 hours on an IBM RISC 6000
workstation.

Figs. 8-11 show the comparison of numerical results between
LanGe's solution and the FEM solution. Except at location A,
LanGe's solution does not agree with the FEM solution. The
poor agreement is due to the errors in treating the elastic
coupling between the rim and the end-disk in LANGE's method.

Figs. 12 and 13 show both the PSTRESS and ANSYS results at
two corners of the interface between the locking device and the
shaft (locations E-E of Fig. 1). At these two locations, 3-D stress
state is much more significant than at locations B and C. In
order to produce more accurate stress solutions at the two cor-
ners, we introduce stress concentration factors in zero and first
order FOURIER component solutions by using our empirical for-
mulae built in PSTRESS 3.0. As seen in Figs. 12 and 13, these
corrected solutions agree well with ANSYS solutions.
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Fig. 4; Stresses at Location A (inside of rim) PSTRESS 3.0 Analysis

Fig. 6: Stresses at Location C (inside of disk) PSTRESS 3.0 Analysis

Fig. 5.  Stresses at Location B (inside of rim) PSTRESS 3.0 Analysis

Fig. 7:  Stresses at Location D (inside of disk) PSTRESS 3.0 Analysis
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5. Conclusions

A new pulley stress analysis method which is based on reformu-
lated transfer matrix has been develcped. An accurate solution
can be obtained by using this method. Three transfer-matrix-
based elements for the shaft, disk plate and cylindrical shell
have been developed. A numerical example has been given,
which demonstrates the merits of this new method.

solids
handling

- Molume 13 = Number 4 « Noy

References

[1] LaNGE, H.: Investigations on Stress in Belt Conveyor Pul-
leys; Doctoral thesis, Technical University Hannover, 1963.

2] ScHmoLTzl, W.: The Design of Conveyor Belt Pulleys with
Continuous Shafts; Doctoral thesis, Technical University,
Hannover 1974.

STRESS (psi)
8

0 30 60 90 120 150 180 210 240 270 300 330 360
THETA (degrees)
O AXIAL FEA X TANGENTIALFEA A SHEARFEA

|— LANGE

STRESS (psi)

0 30 60 90 120 150 180 210 240 270 300 330 360
THETA (degrees)
*  TANGENTIAL FEA 4 SHEARFEA

— LANGE o AXIAL FEA

Fig. 8:  Stresses at Location A (inside of rim) Lange Analysis

Fig. @  Stresses at Location B (inside of rim) LANGE Analysis

8000 15000
TANGENTIAL
6000 R 10000 /Nm
40001 seophe 2 Lo
= 5000
z i
3 % 0 Ad g kacd
% E SHEAR
= I o
b % 50004 Serte
-100001
RADIAL
~8000 T T T T y T T T -15000: v T T T T — T
0 30 60 90 120 150 180 210 240 270 300 330 360 0 30 60 90 120 150 180 210 240 270 300 330 360
THETA (degrees) THETA (degrees)
t— LANGE O RADIALFEA % TANGENTIALFEA A SHEARFEA ] [-— LANGE o RADIALFEA > TANGENTIALFEA A SHEARFEA —f
Fig. 10: Stresses at Location C (inside of disk) LanGE Analysis Fig. 11: Stresses at Location D (inside of disk) Lance Analysis

Fig. 12: Stresses at Location E (inside of pulley) PSTRESS 3.0 Analysis

Fig. 13: Stresses at Location E outside of pulley) PSTRESS 3.0 Analysis

60000
40000
E 20000
§ . o ASAALAAALLAALAA At
(ins : 1
7 -20000-
-40000 5
eoopfREEnEcE ST o scatanngy
0 30 60 90 120 150 18C 210 240 270 300 330 360
THETA (degrees)
I—Psmsss O RADIAL FEA *x TANGENTIAL FEA & SHEARFEA

80000

60000+

400004
i 200004
% o ALAAALARARAA AR A g L AR
&
'5 2 7W

-400007

~60000

[Ei=T=I=1=}
-B00OO- T T T T T T T T T T T
O 30 60 90 120 150 180 210 240 270 300 330 360
THETA (degrees)

I:Psmess O RADIAL FEA % TANGENTIALFEA A SHEARFEA |

718



solids
handling

Volume 13 » Number 4 » November 1993

[3] VapsTrel, R.: Analysis of Belt Conveyor Pulley Using Finite
Element Method; Proc. 4th Int. Conf. in Australia on Finite
Element Methods, University of Melbourne, Aug. 18-20,
1982,

[4] DanEL, W.J.T.: Development of a Conveyor Pulley Stress
Analysis Package; Proc. Int. Conf. on Bulk Material Stor-
age, Handling and Transportation, Newcastle, Aug. 22-24,
1983.

[5] SetHi, V. and NorpeLL, L.K.: Modern Pulley Design Tech-
niques and Failure Analysis Methods; Proceedings of SME
Annual Meeting & Exhibit, Reno Nevada, USA, Feb. 15-
18, 1993,

[6] PesteL, E.C. and Lecki, F.A.: Matrix Methods in Elasto-
mechanics: New York McGraw-Hill Book Co., 1963.

[7]1 Yed Kavuan: General Solution on Certain Problems of
Elasticity with Non-Homogeneity and Variable Thickness,
The Advances of Applied Mathematics and Mechanics,
Vol. 1; China Academic Publishers, pp 240-273, 1987.

[8] Bovce, W.E. and DiPriva, R.C.: Elementary Differential
Equations; Fifth Edition, John Wilsy & Sons Inc., New York,
1992,

9] TimosHENKO, S. and Wonowsky-KREEGER, S.: Theory of
Plates and Shells; McGraw-Hill Book Co., Second Edition,
1959.

[10] Cook, R.D., MaLkus, D.S. and PLesHA, M.E.: Concepts and
Applications of Finite Element Analysis; Third Edition, John
Wiley & Sons Inc., 1989.

Appendix A

TMB Finite Element for Beam

Fig. A1 shows forces that act on a differential beam. Loads P,
M, and g are shown in their positive sense. z is the axial coordi-
nate. The equilibrium equations are

dpP
—=-q (A1)
dz
dmM
=P (A2)
dz

By using TIMOSHENKO's beam theory, we have

dw, P
=0+ — (A3)
dz kaG
de, M
—_—= (Ad)
dz  El

where the subscript s denctes the shaft deformation, w is the
shaft neutral axis displacement, -8, is the slope due to bending,
dw /dz is the slope of the center line of the beam, k is a shape
factor equal to 0.75 for circular cross section, Ef is the bending
stifiness, a is the cross-section area, and G is the shear mod-
ulus.

Egs. (A1)-(A4) can be written in a matrix form

@ =AB+B (A5)
dz
where
B=(w, 0, P, M) (AB)
B=(0,0, -q,0) (A7)

M : ; M-+dM

Fig. A1: Forces that act on a differential element of beam

o
|

-

o

and A=|0 0 0 (A8)

(@]
(@]
o
o o m|—

0 0 1

where B Is called state variable vector.

According to the ODE theory [8], the general solution to Eq. (A5)
can be expressed as

Z
B@) =T@BE)+T@ | T Bs)ds  (A9)
20
wherez, <2<z , z,and z are the coordinates corresponding
to two ends of the beam, and 7{z) is the transfer matrix satisfy-
ing
dar

— =AT and T(zy) =/ (A10)
dz

where / is the identity matrix. Following the general procedure
described in [8], we can obtain the following closed-form trans-
fer matrix

- 3 .

1 7oz, Z-Zg +(z—zo) (Z-zy)

kaG BEI 2E1

2

(Z-24) Z-2Zy
T@zy=|0 1 —_— Al
@ 2F! El ¢ )

0 1 0
L0 0 z-2, 1 ]

where z, £ z <z, Following the procedure described in Appen-
dix D, we can obtain the following finite element equation, which
is equivalent to Eq. (A9)

Key Uay = Fi + A2 (A12)
where
Ugy = Wo (20, 8,(Z), W, (Zg), 8:(Z6)  (A13)

F2Y is the beam element external force vector, A" is the

beam element internal force vector, and Kpy, is the beam ele-
ment stiffness matrix, which can be expressed:
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12E! ,
— Symmetric
L7 +)
BE! 4 +a)El
P P+ LA+
BM T _q2E —6El 12E!
L+ P +a) L1+
6E! @ -aEl —6E! (4 +w)El
0+ LO+o) L+ L(T+o)
(A14)
12E!
where =—5—— and L=z -z4 (A15)
L’kaG
Remarks:

It is not surprising to note that the TMB finite element stiffness
matrix for a beam derived as Eq. (A14) is identical to the beam
stiffness matrix derived by using conventional finite element
method because the polynamial-type trial function used in con-
ventional FEM exactly represents the actual beam displace-
ment. However, for other types of structures such as plate and
shell, the TMB element stiffness matrices may not be the same
as the conventional finite element stiffness matrices.

Appendix B
TMB Finite Element for Disk Plate with Variable Thickness

B.1  TMB Bending Element

Fig. B1 shows a differential element of plate subjected to bend-
ing loads. x, y and z are Cartesian coordinates with z coinciding
with pulley axial direction, x horizontal direction, and y vertical
direction. r and ¢ are disk cylindrical coordinates. Loads Q,, Q,,
M, M, and M, are shown in their positive sense. The equwllbnum
equations are:

oM, M, -M, 1M,
Q, = 7 (B
ar r r do
BMW, M., 1 oM,
Qy=—+2——-——— (B2)
ar r roao
2Q, Q, ‘IE)Q¢
—_—+t—- =ge) (B3
ar roor oo

where g is the external transverse force acting on the neutral
surface of the plate, and equations representing the force-def-
ormation relationship are :

a%u 19u 1 9%

M =Dl — +l| - —+ 5 — (B4)
ar ror r° oo

M. = -D ?%u +1 ou . 1 3% B5)
' “arg rar ot 8¢2

VR 1 9% 1 au 6)
a rorae 23

where u is the plate neutral surface transverse displacement
(see Fig. B1), u is the Poisson's ratio,

EII!

e (B7)
12(1 -1
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E is the Younag's modulus, t is the thickness of the plate, which
is a function of r. Within the element, we assume

t=cr’ (B8)
where ¢ and p are constants. Alsc, we assume the following
FouriER series for the components of displacement and forces

U m COSMO + Z U_,sinma (B9)

e

m=0 m=1

g= 2 g cosmd + 2 g_.sinmd (B10)
m=0 m=1

Q, = ZOmcosmMEQ,‘ _mSinmo B11)
m=0 m=1

Q, = z Qomsinmé + z Qy, -m COSMO (B12)
m=1 m=0

M, = ZM,mGosm¢+2M,. mSinmo (B13)
m=0 m=1

M, = ZchosquZMQ:_msinmq) (B14)
m=0 m=1

My = ZMm sinmo + 2 My -m COSMY (B15)
m=1 m=0

where U, Dy Qo Qq,m M., M m Mg (=0, £1, £2, .} are
functions of r only. Subst\tutlng Eqs (B9)-(B15) into Egs. (B1)-

(B6), we have the following ordinary differential equations

. 1 m
Qm :Mrm+—(Mrm_M¢m)__Mr¢m (B16)
r r
‘ 2 m
Qom = Mg + — Mg+ — My (817)
r r
o] m
Qrm+7Orm_*Q¢m =0m (B18)
r r
2
" 1. m
M =-D Up+u _Urnf_gum (B19)
r r
1. om?
Mem ==-D| W+ —tin——Upy (B20)
r r
m
Mo =D (1 —u)[ —uer—Um] (B21)
r r

where m = 0, +1, £2, ..., and the prime represents derivative
with respect to r. Introducing the following state variables

Fig. B1: Bending forces that act on a differential element of plate
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T = WUy Oy Vs M) (B22)

where O = Unm (B23)
My = =21 M (B24)

v, :zm[ow—?m,ﬂ (B25)

Eliminating five variables, M, M., M. Q ., and Q,  among

Egs. (B16)-(B21) and (B23)-(B25), we can obtain the following
matrix-form equation

W _ 4
oA Nt B. (M =0, 21, £2, ) (B26)
dr
where A, =
0 1 0 0
m? 1
wrz _E 0 onDr
2D m?(2 -2 p+m? —=m2p?) 2D M3 —2p-p?) 1 _um?
3 2 r iz
2D mA(=3 +2p+%) 2nD(1 —pfr2m?-2um®) 4 _(1-w
r? r r
(B27)
B, =0, 0, 2mrg,,, 01" (B28)

Therefore, following the procedure described in Appendix D, we
can obtain the following finite element equation for a circular
plate ring (ry < r < 1) with variable thickness and subjected to
harmaonic bending load

Keo nUE? = Filhy + FStm (B29)

where UED = Wi, OLms Ugms Bom)T  (B3D)

Kap  is the plate element bending stiffness matrix, F5q, is the
element external force vector, A5, is the element internal force

vector, the subscript L and O denote locations at r = r and r,,
respectively, and m denotes the FOUREER component number.
Due to the complexity in deriving the transfer matrix for
Eq. (B26), it is much more difficult to obtain a closed-form
expression for Kgp, ,, of Eq. (B29) than for Ky, of Eq. (A12).
Instead, we can very accurately calculate Ky ., by using our
computer program of PSTRESS 3.0 mentioned in Remark ii of
Appendix D.

B.2  TBM Plane Stress Element

Fig. B2 shows a differential element of plate subjected to in-
plane loading. Loads N, N, and Nm, are shown in their positive
sense. The definitions of x, v, z, rand ¢ are the same as in sec-
tion B.1. The equilibrium equations are

N, N,—N, 10N
e (e 1O

=0 (B31)
ar r roog
alN N 1 oN
Moy g (B32)
ar ror do

The equations for force-deformation relationship are

Et aw 1dv w
N, = | — th-—tu— (B33)
(1 -pH\ ar rdo r
Et ( ow 19v w
N¢=—2(u—w+7—+f] (B34)
A=)\ o rdo r
Et ov 1aow v
Nyp=——e| —+—— = (B35)
200 +wi\or radd 1

Iev f‘tress Analysis

AY Nr + dNr

Nro + dNre

¢/ No + dNg

-
0 X

Fig. B2: In-plane forces that act on a differential element of plate

where the definitions of u, £ and t are the same as in section
B.1, and v and w are the displacements of the neutral surface in
circumferential and radial directions, respectively.

We assume the following FOURIER series for the components of
displacements and forces

v = 2 Ve, sinmao + z Viom co‘smq) (B36)

1 m=0

3
I

W, cosmo + Z W _, SiInme (B37)
8] m=1

=
e

3
1

Ny cOSMO + O N, nsinme  (B38)

m=1

P4
Il
hgb

3
Il
=]

Ny COSMO + O Ny_msinme  (B39)

m=1

=
1
NgE

3
1t
o

Ny SINMG + 2 Ny COSMB (B40)

m=0

M

N, =

o

3
n

where v w, N Noand N (m =0, +1, £2, .. are func-
tions of r only. Substituting Egs. (B36)-(B40) into Egs. (B31)-

(B35), we have the following ordinary differential equations

. 1 m
N+ — (Nrm*Ne;m)Jr_Nr(pm =0 (B41)
r r
. 2 m
Nrmm + —Negm — _N¢m =0 (B42)
r r
Et . m 1
Nrm: 5 Wm+u *Vm+7WmJ (843)
(1-u) r r
Et .m 1
Nom = — | MWy =V =W, (B44)
(1—-u) r r
Et .oom 1
Nyn = ——— |V = —Wp——Vn (B45)
2(1+w r r

where m =0, +1, 42, £3, .... Introducing the following state var-
iables

M =Wn, Vi, 20N, 2TtrNr¢m)T (B46)

721



Pulley Stress Al

and eliminating N, - among Egs. (B 41)-(B45), we obtain

om
anm,
L =CyNm (M=0, £1, +2, ..)  (B47)
dr
where
[ wn -y’ ]
b o
r r 2nEtr
m 1 1+
_ _ 0 *
C, = r r nEtr (B48)
2nEt 2nEtm 1-p m
r r r r
onEtm  2nftm’ wmn 2
L r r r r

Thus, following the similar procedure in deriving Eq. (B29) , we
can finally derive the following TMB finite element equation for a
circular ring {ro < r < r) with variable thickness, subjected to in-
plane harmonic loading

PN _ PN PN
KPNmUm - Fintm+Fextm

PN _ T
Um *(WLm’ Vims Woms VOm)

(B49)

where (B50)

Ken m I8 the element plane-stress stiffness matrix, Ftl s the
element external force vector, FR, is the element internal force

vector, and the subscript L and 0 denote locations at r = r,_and
ry» respectively, and m denotes the FOURIER component num-
ber.

Combining Eq. (B29) and Eqg. (B49), we can form a TMB shell
element for disk plate, which is subjected to both bending and
in-plane loading

Kokm Un' = Fos + ot m (B51)

where K., is the disk element stiffness matrix, UEX s the ele-
ment displacement vector, A3, is the element external force
vector, and F2¥ is the element interal force vector. They can

intm

be calculated by the following formulae

DK T
Un™ = WUim: YVims Wims Otms Yoms Yoms Woms O5m) (852)

Kokm = S1Kgp nS1 +S2Kpy mS2 (B53)
F;nnt‘fm = ST I’Eir'\E!tDr\'w + S;FinPtNm (B54)
Fe?le = SIFnErDm +S; Fezg\lm (B55)
10 0 0 0 0 O
0 0o 0 1 0 0 0 O
S, = (B56)
0 0 o o1 0o 0 O
0 0 0o 0 0 0 0 1

Remarks:

iv. Any other state variables than those defined in Eqg. (B22) and
Eq. (B46) cannot be employed because they may lead to in-
correct element stiffness matrices and force vectors due to
the violation of MAXWELL's reciprocal theorem.

v. Stiffness matrices obtained from transfer matrices must be
symmetric. Any mistakes in choosing state variables, in de-
riving equations, and/or in numerical programming may lead
to asymmetric stiffness matrices.
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If the stress calculation is desired, we can follow the following
steps
a. calculate values of state variables at element nodes,

i,

b. use transfer matrix and Eq. (D3) to calculate values of
state variables at any interior location of the element,
where stress values are desired,

c. calculate first derivatives of state variables at desired loca-
tions by using Eq. (B26) and Eq. B47),

d. calculate M, . M, M N N, andN
(B19)-(B21) and Egs. (B43)-(B45), and

e. calculate Fourier components of stresses by using calcu-
lated forces in step d.

by using Eqgs.

rem

Appendix C

TMB Finite Element for Cylindrical Shell

Fig. C1 shows forces acting on a differential element of a cylin-
drical shell with constant thickness t and radius R, z and ¢ are
cylindrical coordinates. Loads Ny, N,, S, Q,, Q,, M,, M, and
M,, are shown in their positive sense. The equilibrium equa-
tions, according to [9], are

aN aS
— s = 4f,=0 (C1)
dz  Rdo
N S
Mz, o8 +f,=0 (C2)
Rd¢ 9z
N, 9Q aQ :
2y Ty 22 =0 (C3)
R 0z RJo
oM oM
Qy=—2+—2 (C4)
3z RIe
oM, IM
Q= b —2 (C5)
dJz Rdo

where f,, f,, and f, are external loads acting on the neutral sur-
face of the shell in axial, circumferential and radial directions re-
spectively, and the equations for force-displacement relation-
ship, according to [9], are

Et Ju av w
Ny :—2{—+u7+p.—} C6)
(1-uH\oz Rao R
Et du  ov  w
No = s |[H—+ —— + — (C7)
d-pyl 8z Rav R
Et (2 d
_ [—“+—V} ©8)
2(1+w\Rdo 9z
a’ a’
M, =-D| 2 +ps (C9)
dz R
2° a*
M, =-D u.i‘/:JrAzuz (G10)
0z R“dd

2

M, =-(1-wD (C11)

Razdd

where v, v and w are shell neutral surface displacements in
axial, circumferential and radial directions, respectively,

Et®
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the definitions of £ and u are the same as in section B, and tis
the constant shell thickness. We assume the following FOURIER
components of displacements and forces

Ef cosmqwz‘fHﬂ sinm¢ (C12)
m=0 m=1
fy = 2 fom SINMG + 2 fy-m COSMIO (C13)
m=1 m=0
£ D fcosmo+ D f, L Sinmo (©14)
m=0 m=1
u= Zumcosm¢+2u,msinm¢ (C15)
m=0 m=1
V= 2 Vi SINM¢ + Z V_p COSMG (€16)
m=1 m=0
w = ZWmcosm¢+zw_msinm¢ (C17)
m=0 m=1
= ZNW cosmq)JrELN1 _msinmg¢ (C18)
m=0 m=1
N, = z,l’\!qmcosmq)Jrz‘!\f0 _mSInm (C19)
m=0 m=1
S= ZS smm¢+28 cosmd (C20)
m=1 m=0
M, = 3 M, cosmo+ 3, M, .snmo  (C21)
m=0 m=1
Fig. C1: Forces that act on a differential element of cylindrical
(o
R
0
0
Jm = 0
0
0
LO

Stress Analysis

M, = Z M, cosme + 2 M, _sinmé

(C22)
m=0 m=1

My, = ZszmSi”m‘D* 2 Mz mcosmy  (C23)
m=1 m=0

Q, = ZQWmcosm¢+ZQ1y,msinm¢ (C24)
m=0 m=1

Q, = 2 Qumsinmé + 2 Qo _cosmo (C25)
m=1 m=0

where all Fourier coefficients are functions of z only. Substitut-
ing Egs. (C12)-(C25) into Egs. (C1)-(C11), introducing the fol-
lowing state variables

Em =
(un’u Vm! Wm’ m» 2ERN1m7 ZRRSm' ZRF?WIWV? anMTm)
(C26)
where B, = —Wn (C27)
m
and Vim = Qim+ —Mizm (C28)
R

and eliminating five variables, N, Mo, M., Q. and Q..
we can finally obtain the following matrix-form eguation after a

long tedious procedure of mathematical derivation

d
_éT_ngmu (m=0, £1, £2, ..) (C29)
dz
where
1-p 7
—5 R 0 o O 0 0
1+u
0 0 0 o X o o0
0 0 -1 0 0 0 0
0 _um? 0 0 0 0 81 -12)
R2 nEtR
0] 0 0 0 —g 0 0
2nEtm? 2rEtm im
iR =5 0 *H— 0 0 0
2nEtm QnEt n um?
R (‘1 12H°) 0 R 0 0 R?
aEtdm?
Q 0 801 +pR 0 0 1 0 |
(C30)
and
m (O 0, O O _Zn'qums "'QTCRf(pm’ —ZT[Rfrms O)T

(C31)

Therefore, according to the conclusions of Appendix D, the
transfer matrix for Eq. (C29) can be obtained by the computer
program developed in PSTRESS 3.0. Based on the transfer ma-
trix, the TMB finite element for cylindrical shell with z, < z <z,
can be derived by following the procedure described in Appen-
dix D, and the result can be expressed by

KCS m UHCWJS = Fl.nctﬁn Feitsm (C32)
where
Urgsz(u\ms VLma WLma BLms Uom, VOm‘ WOm- 90,“)‘(033)
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Keg o is the cylindrical-shell stiffness matrix, £,55,is the element

external force vector, £S5, is the element internal force vector,
and the subscripts L and O denote locations at z = 7z, and
z = z,, respectively, and m denotes the FOURIER component
number.

If stress calculation for cylindrical shell is desired, we can follow
the similar procedure described in Remark vi of section B.

Appendix D

Procedure of Deriving TMB Finite Element

In Appendices A, B and C, it is shown that the governing equa-
tions for FOURER components for shaft, end-disk plate with non-
uniform thickness, and cylindrical shell of a pulley can be re-
duced to a set of ODEs of first order respectively, and these
ODEs can be finally unified as the following form

Ay,
l =Hm(S)Um +Lm

ds

(m=0, £1, £2, ..)) (D1)

where the subscript m denotes the ordinary number of FOURER
components, H_ is a 2n x 2n matrix, L is a 2n x 1 vector con-
taining external loads, ¥, , is the state variable vector defined as

Y = Un, £ (D2)

U, is an n x 1 vector containing generalized displacements, £
an n x 1 vector containing corresponding generalized internal
forces, and s is an axial or radial coordinate of the pulley, which
is assumed within the range of s, < s <5, where s, and s _are
corresponding to two ends of a pulley component section (i.e.
element).

Because Eq. (D1} is linear, the general solution is obtainable. By
using the theory of ODE [8], the general solution to Eq. (D1) can
be written as

Vi (8) = Ton (8) Wi (80) + Try (s)j T () Ly ()dx (D3)

Q

where T_(s) is a 2n x 2n matrix called transfer matrix satisfying

dT,
-2 = Hm Tm and
ds

Trn (SO) =1 (D4

where / is the identity matrix. For any set of linear ordinary diffe-
rential equations, which can be expressed in the form of Eq.
(D1), there exists a unique 2n x 2n transfer matrix T, (s) satisfy-
ing Eq. (D4). If Eq. (D1) is a set of constant ODEs (i.e., H is in-
dependent of s) or it can be transformed into a set of constant
ODEs, a closed-form transfer matrix 7_(s) is obtainable. The
general procedure of deriving T, (s) is discussed in many text-
books, such as the one by Bovce and DiPRivA [8]. In what fol-
lows in this section, it is shown that a special finite element (i.e.,
TMB element) can be developed from Eg. (D3).

Let us consider a section of pulley, which is located in s, <s <
s . and let

T T
T.(50) ={ o “FJ (05)
Ty Tee
UL
Y (SL) = (D6)
int L
UO
W (Sq) = (D7)
7Fint 0

724

’ Valume 18 - Number 4 = November 1993

Sy
Po = To(s0) | Tw ) B dx (D8)
Sp
where U, =U, (s (D9)
Ug = U (Sp) (510)
Fim L :Fm (SL) (D11)
Fota = —Fn(S0) (D12)

Then Eg. (D3) can be rewritten as
{UL]ZPU —TUF}{UO }Pm
Em L TFU 7TFF I’Eim 4
Reorganizing Eq. (D13), we have
! _TUU UL _ 0 _TUF
0 ~Try JLUs - —Tee

from which we can obtain

(D13)

F
'ml}er (D14)
FintO

KmDm:Emm"'Fextm (D15)
where
o T -7
sz[ “F} { “u] (D16)
e B A Y
Dy = (W, Ug)' (D17)
F
Foem { L} (D18)
FintO
0 =T
Fotm = e, (D19)
= =Tee

It is seen that Eqg. (D15) is formulated in a finite-element form,
where K is element stiffness matrix, D, is the element dis-
placement vector, F, , IS the element internal force vector, and
Foxt m I8 the element external force vector. The detailed proce-
dures of developing TMB elements for shaft, end-disk and cylin-

drical shell are given in Appendices A, B and C, respectively.

Remarks:

i. Itis noted that in developing TMB finite elements the trial
function for representing element displacement field is not re-
quired. This is the feature that distinguishes the MTM method
from the conventional finite element method.

i. In general, for any type of structures, whose governing diffe-
rential equations can be reduced tc the form of Eqg. (D1),
which can be further transformed into a set of constant
ODEs, the corresponding transfer matrix 7,(s) of Eq. (D3)
can be derived following some standard procedure de-
scribed in [8]. In most cases, the procedure of deriving 7, (s)
can be fulfiled by using a computer program, and P, defined
in Eg. (D8) can be evaluated analytically or numerically; and
therefore, a computer program can be made, where the
input is the matrix H_, and the external loads, and the output
is the TMB element stiffness matrix and element external
force vector. In this program, there is no discretization error
in computing TMB element stiffness matrix. As a FORTRAN
subroutine, such a computer program has been developed.

in PSTRESS 3.0.
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